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Abstract

The effect on aliasing errors of different formulations describing the cubically nonlinear convective terms within the dis-
cretized Navier–Stokes equations is examined in the presence of a non-trivial density spectrum. Fourier analysis shows that
the existing skew-symmetric forms of the convective term result in reduced aliasing errors relative to the conservation form.
Several formulations of the convective term, including a new formulation proposed for cubically nonlinear terms, are
tested in direct numerical simulation (DNS) of decaying compressible isotropic turbulence both in chemically inert (small
density fluctuations) and reactive cases (large density fluctuations) and for different degrees of resolution. In the DNS of
reactive turbulent flow, the new cubic skew-symmetric form gives the most accurate results, consistent with the spectral
error analysis, and at the lowest cost. In marginally resolved DNS and LES (poorly resolved by definition) the new cubic
skew-symmetric form represents a robust convective formulation which minimizes both aliasing and computational cost
while also allowing a reduction in the use of computationally expensive high-order dissipative filters.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical simulations of the Navier–Stokes equations (NSE) for a compressible, reactive fluid are
unavoidably plagued with some degree of error. Error sources include the truncation error associated with
the integration and differentiation, round-off error, and error in the specification of the boundary conditions.
Another important source of error is aliasing error [3,4] which arises during the differentiation of the product
of two (or more) variables. This is particularly important in the evaluation of the convective terms of the
Navier–Stokes equations. Aliasing error is present in pseudospectral, finite-difference, finite-volume, and
finite-element approaches both in LES and DNS of turbulent flows. The aliasing phenomenon is often
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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manifested by an unphysical growth of the spectral energy content of the integration variables at high wave-
numbers. This energy growth at the high wavenumber end of the spectrum is accompanied by an equally arti-
ficial and accelerated decay of the energy content at the low wavenumber end of the spectrum. In situations
where they are available, purely dissipative, high-order filters [15,19,23] may be used to remove the aliased
energy accumulated at the highest wavenumbers of the spectrum. However, this technique does not compen-
sate for the spectral energy loss at the low wavenumber modes. Therefore, it is generally prudent to select a
numerical scheme which minimizes energy aliasing from the convection operator. In doing so, the need for
high-order, dissipative filters will be minimized. Using minimally aliasing convection operators is particularly
important in contexts where good filters are not readily available or there is little inherent dissipation in the
numerical method. Low-order methods, with their high inherent dissipation, will likely see less benefit from
better convection operators than higher-order methods. As there are other sources of high wavenumber infor-
mation on the computational grid such as inexact derivative operators, high-order, dissipative filters are still
an important tool in simulations of the NSE, when available.

Efforts to reduce aliasing error associated with the convective discretization of the NSE have their origin in
constant density contexts [11] where the nonlinearities encountered in the convective terms are quadratic.
Zang [29] performs tests to compare the four alternative formulations of the convective terms in the incom-
pressible NSE: conservation/divergence, convection, rotation, and skew-symmetric. Subsequent to this, Hor-
iuti and Itami [13], and Kravchenko and Moin [18] consider constant density flows while Blaisdell et al. [1,2],
Chow and Moin [5], Ducros et al. [6], and Morinishi et al. [22] consider variable density flows. It is generally
recognized that the aliasing error, for both constant and variable density flows, can be minimized by using a
skew-symmetric formulation of the convective terms, however Boyd [3] importantly remarks that, if nonlinear
interactions are so strong that non-trivial amounts of energy are being aliased, then the number of grid points
should be increased in order to produce a meaningful solution. Other works on aliasing in simulations of an
incompressible fluid may be found in the papers of Wilhelm and Kleiser [28], Lube and Olshanskii [21], Verst-
appen and Veldman [27], and Park and Mahesh [24].

In variable density flows, the convective terms are characterized by cubic nonlinearities and it is unclear
whether one may simply recast a cubically nonlinear term using constructs specifically designed for quadratic
nonlinearities [1,2,5,6,22]. Additionally, there is an inherent ambiguity in applying a skew-symmetric formu-
lation constructed for quadratic nonlinearities to a cubically nonlinear term; three formulations are possible,
two of which are mentioned in the open literature [1,9]. It should be stressed that if the density field is char-
acterized by very small fluctuations and, consequently, it has no meaningful spectrum, then the variable den-
sity case will resemble the constant density case with quadratic nonlinearities. However, in compressible,
multicomponent, reacting flows, the density will generally have a relatively broad spectrum. The objective
of the paper is to explore a wide range of convective formulations that, to varying degrees, minimize aliasing
error for quadratically and cubically nonlinear terms and to verify the robustness of these formulations in
cases of a non-trivial density spectrum.
2. Background

The dimensional form of the Navier–Stokes equations for a compressible, multicomponent, reacting fluid is
given by the following expressions:
oðquiÞ
ot
þrj � ðquiujÞ ¼ rj � ð�pdij þ sjiÞ þ q

XNg

s¼1

Y sfsi ð1Þ

oq
ot
þrj � ðqujÞ ¼ 0 ð2Þ

oðqe0Þ
ot
þrj � ðqe0ujÞ ¼ rj � ð�puj þ sji � ui � qjÞ þ quj �

XNg

s¼1

Y sfsj þ
XNg

s¼1

fsj � Jsj ð3Þ

oðqY sÞ
ot

þrj � ðqY sujÞ ¼ �rj � Jsj þ W s _xs ð4Þ
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where i, j = 1,2,3, q is the density, p is the pressure, e0 is total specific internal energy, s = 1,2, . . . ,Ng is the
species index, Ng is the total number of species, Ys is the mass fraction of species s, t is the time, i and j

are spatial direction indices, ui is the velocity vector component in direction i, fsi is the body force per unit
mass of species s in direction i, Jsi = qYsVsi is the diffusive flux of species s in direction i, Vsi is the diffusion
velocity of species s in direction i, qj is the heat flux vector in direction j, sji is the transpose of the viscous stress
tensor for directions i and j, _xs is the molar reaction rate of species s per unit volume, and rj is the gradient
operator in direction j. The particular form given above is that commonly found from a continuum derivation
of the expressions for mass, momentum, energy, and species mass balance relations in integral form. Though
not given, an equation of state for the fluid is also required to integrate the governing equations.

While the Einstein summation convention is used, a dot product symbol is included to emphasize both the
divergence and directional derivative operators, when appropriate. The particular choices of constitutive mod-
els for qj, Vsj, sij, and _xs are not immediately relevant to the results of this paper. However, to correctly
account for the relative operations count of each possible convective operator, it will be assumed that gradi-
ents of chemical species computed for Jsi are available to any convective operator that needs these terms. No
attempt will be made to reformulate the divergence of the viscous fluxes: $ Æ sT, $ Æ q and $ Æ J. Rather, this
paper focuses only on how one best discretizes the quadratically nonlinear rj � ðqujÞ, rj � ðpujÞ, and cubically
nonlinear rj � ðquiujÞ;rj � ðqe0ujÞ, and rj � ðqY sujÞ terms so as to minimize aliasing error generated during
numerical simulations.

In what follows, inviscid components of (1)–(4) will be manipulated for the purposes of reducing aliasing
errors. Although the equations are expressed in what is often called primitive variables, a different set of
variables may be chosen. On the other hand, awkward choices for the integration variables will likely com-
plicate the solution procedure and are of questionable value when solving for flows which are not single-
component, ideal gases having constant properties. In this paper, convective formulations are constructed
using only primitive variables because they are a natural choice and they readily facilitate symmetrical
groupings of variables.

2.1. Convective formulations

If one focuses on the terms on the left-hand side (LHS) of (1)–(4), one may write these terms in several ana-
lytically equivalent forms. The essential point, and the motivation for this paper, is that these mathematically
equivalent forms are not numerically equivalent. For the momentum and scalar, / = {1, e0,Ys}, equations,
one can write the four traditional forms: the divergence or conservation form
oðquiÞ
ot
þrj � ðquiujÞ ¼ RHSqu ð5Þ

oðq/Þ
ot
þrj � ðq/ujÞ ¼ RHS/ ð6Þ
the convection form
q
oui

ot
þ quj � ðrjuiÞ ¼ RHSqu ð7Þ

q
o/
ot
þ quj � rj/ ¼ RHS/ ð8Þ
the skew-symmetric forms QSSF
oðquiÞ
ot
þ 1

2
½rj � ðquiujÞ þ quj � ðrjuiÞ þ uirj � ðqujÞ� ¼ RHSqu ð9Þ

oðq/Þ
ot
þ 1

2
½rj � ðq/ujÞ þ quj � rj/þ /rj � ðqujÞ� ¼ RHS/ ð10Þ
and QSSB
oðquiÞ
ot
þ 1

2
½rj � ðquiujÞ þ quiðrj � ujÞ þ uj � rjðquiÞ� ¼ RHSqu ð11Þ
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oðq/Þ
ot
þ 1

2
½rj � ðq/ujÞ þ q/ðrj � ujÞ þ uj � rjðq/Þ� ¼ RHS/ ð12Þ
where for constant density flows, the two momentum forms, (9) and (11), and the two scalar forms, (10) and
(12), become identical. Note that there is a difference in how (10) and (12) simplify to the continuity equation
by setting / = 1. Only (12) produces a formulation different from the conservation form,
oq
ot
þ 1

2
½rj � ðqujÞ þ qðrj � ujÞ þ uj � rjq� ¼ RHS/ ð13Þ
Feiereisen et al. [9] employ (9) while Blaisdell et al. [1,2] use (11). In the next sections, (9) and (10) will be
named the Feiereisen quadratic skew-symmetric formulation or, QSSF, while (11) and (12) will be named the
Blaisdell quadratic skew-symmetric formulation or, QSSB. Erlebacher and Hussaini [7] state that simulations
of supersonic boundary layer transition were stable using (9) but not (11). The ambiguity in the definition
for a skew-symmetric convective operator in the compressible case is a consequence of a cubically nonlinear
term being treated as a quadratically nonlinear term. Another consequence of this ambiguity is that quadratic
skew-symmetric formulations of the momentum equation using momentum and velocity as the two groups of
variables may be written in two different ways; QSSB and QSSF.

One further way to apply the derivative of a product, though not necessarily toward a useful construct, is
oðquiÞ
ot
þ 1

2
½rj � ðquiujÞ þ uiuj � ðrjqÞ þ qrj � ðuiujÞ� ¼ RHSqu ð14Þ

oðq/Þ
ot
þ 1

2
½rj � ðq/ujÞ þ /uj � ðrjqÞ þ qrj � ð/ujÞ� ¼ RHS/ ð15Þ
This convective operator could potentially find use in flows with relatively narrow velocity spectra yet broad
density spectra. Morinishi et al. [22] also include another variation on skew-symmetry by combining (11) or
(12) with the continuity equation
q
oui

ot
þ 1

2
½rj � ðquiujÞ � uirj � ðqujÞ þ quj � ðrjuiÞ� ¼ RHSqu ð16Þ

q
o/
ot
þ 1

2
½rj � ðq/ujÞ � /rj � ðqujÞ þ quj � ðrj/Þ� ¼ RHS/ ð17Þ
Honein and Moin [12] consider a skew-symmetric form of the total energy equation
oðqe0Þ
ot
þ ui � ½rj � ðquiujÞ� þ ðquiujÞ : ðriujÞ þ

1

2
rj � ðqe0ujÞ þ

e
2
rj � ðqujÞ þ

quj

2
� ðrjeÞ þ pðrj � ujÞ

þ ðuj � rjÞp ¼ ui � ðrj � sjiÞ þ sji : ðriujÞ � rj � qj þ quj �
XNg

s¼1

Y sfsj þ
XNg

s¼1

fsj � Jsj ð18Þ
where body force terms have been added to be consistent with (3) and e denotes the specific internal energy.
Lastly, one has the rotation form
oðquiÞ
ot
þ q ðx� uÞi þ

1

2
riðuj � ujÞ

� �
þ uirj � ðqujÞ ¼ RHSqu ð19Þ
where there is no rotation form for scalar evolution equations. Fedioun et al. [8] include a variation on (19)
where (1/2)$i(uj Æ uj) = ($iuj) Æ uj. Many other analytically equivalent expressions of the governing equations
may be readily derived.

2.2. An improved ‘‘skew-symmetric’’ formulation

2.2.1. Quadratic nonlinearities

As a prelude to the analysis of cubically nonlinear terms, reviewing the analysis of quadratically nonlinear
terms is useful. Blaisdell et al. [1,2] have derived a convenient way to express conservation (5 and 6), convec-
tion (7 and 8) and skew-symmetric (9)–(12) forms in the following single generalized expression
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rðfgÞ ¼ arðfgÞ þ ð1� aÞ½grf þ frg� ð20Þ
however, in spirit and origin, the above expression is restricted to quadratic nonlinearities. By this, it is meant
that neither f nor g may be further decomposed into the product of other variables. Note that the form of (20)
expresses the derivative of a product in terms of symmetrical groupings of all possible equivalent terms com-
puted as the derivative of a product. The coefficient a = 0,1/2,1 corresponds to the convection, skew-symmet-
ric, and conservation forms, respectively. Defining the Fourier transforms
f ðxÞ ¼
XN

2

p¼�N
2þ1

f̂ peikpx; gðxÞ ¼
XN

2

q¼�N
2þ1

ĝqeikqx ð21Þ

f ðxÞgðxÞ ¼
XN

2

p;q¼�N
2þ1

XN
2

f̂ pĝqeiðkpþkqÞx ð22Þ
the derivative of f(x)g(x) evaluated at the gridpoint l is
off ðxÞgðxÞg
ox

����
l

¼
XN

2

p;q¼�N
2þ1

XN
2

iðkp þ kqÞf̂ pĝqeiðkpþkqÞxl ð23Þ
where modes �N/2 and N/2 define the wavenumber range that the numerical grid is able to resolve. Substi-
tuting this expression into the generalized convective term in (20), one obtains
off ðxÞgðxÞg
ox

����
l

¼
XN

2

p;q¼�N
2þ1

XN
2

ik�f̂ pĝqeiðkpþkqÞxl ð24Þ
where
k� ¼ faðkp þ kqÞ} þ ð1� aÞðkp þ kqÞg ð25Þ

will be referred to as effective amplitude (or modified) wavenumber because it is the wavenumber associated
with the wave amplitude k�f̂ pĝq. This is to be contrasted with the correct amplitude ðkp þ kqÞf̂ pĝq. The wave-
numbers denoted with a superscript } in (25) arise from the quadratic term (first term on the right-end side) of
(20) while the linear terms of (20) result in the wavenumber with no superscripts. To make the analysis more
productive, each wavenumber will be chosen to be the same so that neither of the variables (g or f) has pre-
cedence over the other. Hence, kp = kq in the quadratic case giving
k� ¼ faðkp þ kpÞ} þ ð1� aÞðkp þ kpÞg ð26Þ

In the case of quadratic nonlinearities, for j2kpj 6 N/2, there is no aliasing of wavenumbers. However, for N/
2 < j2 kpj 6 N, the true wavenumber sums (N/2 + n) and (�N/2 � n) are aliased by the quadratic term to
2k = (�N/2 + n) and 2k} ¼ ðN=2� nÞ, respectively. Focusing only on positive k, one has that n = 2kp � N/
2, where the quantity n describes the ‘‘distance’’ of the unresolved wavenumber 2kp > N/2 from the resolved
range. Consequently, the modified wavenumber k* in this quadratic case can be expressed by substituting these
terms into (26) to find
k� ¼ a
�N

2
þ n

� �
þ ð1� aÞ N

2
þ n

� �
¼ ð1� 2aÞN

2
þ n ¼ c1 ð27Þ
where c1 is simply k* outside the resolved range for N/2 < 2kp 6 N. Therefore, the modified wavenumber may
be expressed in terms of the true wavenumber for the entire positive range of wavenumbers as
k� ¼ k; 0 P k P
N
2

k� ¼ �N
2
þ ð1� 2aÞN

2
þ k;

N
2
< k P N

ð28Þ
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While the aliasing errors described by k* cannot be removed, it is generally advisable to employ the convective
formulation that minimizes the value of k* when 2kp is not resolved by the grid. Table 1 shows the values of
c1 = k* for several convective formulations. In Fig. 1, k* versus k is plotted for each of these formulations.
Ideally, k* � 0 would be enforced for all aliased wavenumbers but this is not possible. Since it is likely that
most integration variables will have a decaying spectrum as wavenumbers increase, having k* � 0 at lower
wavenumbers would mean less wavenumber energy available for aliasing. Hence, to optimize the convective
operator, k* = 0 is chosen at the lowest wavenumber for a given aliasing regime. For the quadratic operator,
k = N/2 is chosen and then k* = 0 implies a = 1/2. This choice is most likely to minimize aliased wavenumber
energy and corresponds to the skew-symmetric forms QSSF and QSSB.

2.2.2. Cubic nonlinearities

For cubic nonlinearities such as rj � ðquiujÞ;rj � ðqe0ujÞ, and rj � ðqY sujÞ, one may begin extending (20) by
taking the gradient of three variables: f,g, and h. One is free to then write
Table
Coeffic

Case

2

2a

2b

2c

2d

2e
rðfghÞ ¼ arðfghÞ þ brðfghÞ þ crðfghÞ þ drðfghÞ þ �rðfghÞ ð29Þ
where � = (1 � a � b � c � d). Next, by differentiating a product, the original terms may be written in four
different yet analytically equivalent forms:
1
ients of (20) where b = (1 � a) along with the associated values of k* = c1

a b c1

a b ð1�2aÞN
2 þ n

1 0 �N
2 þ n

3
4

1
4

�N
4 þ n

1
2

1
2 n

1
4

3
4

N
4 þ n

0 1 N
2 þ n

k

k*

-N/2

N/2

N

N/2 N

α = 0

α = 1/4

α = 1/2

α = 3/4

α = 1

3/2N

Resolved Range C1 Range

Fig. 1. Modified wavenumber k* = c1 versus k for different values of a in quadratic skew-symmetric formulations.
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rðfghÞ ¼ frðghÞ þ ghrf ¼ grðfhÞ þ fhrg ¼ hrðfgÞ þ fgrh ¼ ghrf þ fhrg þ fgrh ð30Þ

Substituting each of these five terms into (29) once gives
rðfghÞ ¼ arðfghÞ þ b½frðghÞ þ ghrf � þ c½grðfhÞ þ fhrg� þ d½hrðfgÞ þ fgrh� þ �½ghrf

þ fhrg þ fgrh� ð31Þ
Setting b = c = � = 0, the conservation, skew-symmetric and convective forms correspond to (a = 1,d = 0),
(a = 1/2,d = 1/2), and (a = 0,d = 1), respectively. Collecting terms in (31),
rðfghÞ ¼ arðfghÞ þ bfrðghÞ þ cgrðfhÞ þ dhrðfgÞ þ ðbþ �Þghrf þ ðcþ �Þfhrg þ ðdþ �Þfgrh ð32Þ
Organizing the quadratic and linear terms into symmetrical groupings in analogy with the constant density,
skew-symmetric form, one may set b = c = d so that � = (1 � a � 3b) giving equal weight to different permu-
tations of the variables. This gives
rðfghÞ ¼ arðfghÞ þ b½frðghÞ þ grðfhÞ þ hrðfgÞ� þ ð1� a� 2bÞ½ghrf þ fhrg þ fgrh� ð33Þ
For a = 1 and b = 0, one gets the conservation form. One can no longer retrieve any of the quadratic
skew-symmetric or convection forms after having set b = c = d. Setting b = 0 and h = 1 in (33), (20) is
retrieved. Note that the coefficient a multiplies the cubic term, b multiplies the quadratic term, and
(1 � a � 2b) multiplies the linear term. Next, the functions f(x), g(x), and h(x) may be expanded as
was done in (21)
f ðxÞ ¼
XN

2

p¼�N
2þ1

f̂ peikpx

gðxÞ ¼
XN

2

q¼�N
2þ1

ĝqeikqx

hðxÞ ¼
XN

2

r¼�N
2þ1

ĥre
ikrx

ð34Þ
Their product is then given by
f ðxÞgðxÞhðxÞ ¼
XN

2
XN

2
XN

2

p;q;r¼�N
2þ1

f̂ pĝqĥre
iðkpþkqþkrÞx ð35Þ
while the derivative of this product at grid point l is
off ðxÞgðxÞhðxÞg
ox

����
l

¼
XN

2
XN

2
XN

2

p;q;r¼�N
2þ1

iðkp þ kq þ krÞf̂ pĝqĥre
iðkpþkqþkrÞxl ð36Þ
Substituting the generalized convective term, (33), into this expression gives
off ðxÞgðxÞhðxÞg
ox

����
l

¼
XN

2
XN

2
XN

2

p;q;r¼�N
2þ1

ik�f̂ pĝqĥre
iðkpþkqþkrÞxl ð37Þ
where
k� ¼ aðkp þ kq þ krÞ� þ b½ðkq þ krÞ} þ ðkp þ krÞ} þ ðkp þ kqÞ}� þ ð1� a� 2bÞðkp þ kq þ krÞ ð38Þ

Terms denoted with a superscript � arise from cubically nonlinear terms while those denoted with the super-
script } are from quadratically nonlinear terms. Setting kp = kq = kr so that neither of the variables (g, h, or f)
has precedence over the others, the modified wavenumber can be expressed as
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k� ¼ aðkp þ kp þ kpÞ� þ 3bðkp þ kpÞ} þ ð1� a� 2bÞðkp þ kp þ kpÞ ð39Þ

When cubic nonlinearities are present, the spectral aliasing analysis involves two different aliasing regimes, rather
than only one aliasing regime as in the quadratically nonlinear case. The first aliasing regime is when only the
cubic term aliases and this is the case for 3kp > N/2 but 2kp 6 N/2 or 3kp 6 3N/4. Hence, 3kp = N/2 + n and
ðkp þ kp þ kpÞ ¼
N
2
þ n

� �

ðkp þ kpÞ} ¼
2

3

N
2
þ n

� �

ðkp þ kp þ kpÞ� ¼
�N

2
þ n

� �
ð40Þ
and therefore (39) becomes
k� ¼ a
�N

2
þ n

� �
þ 2b

N
2
þ n

� �
þ ð1� a� 2bÞ N

2
þ n

� �
¼ c1 ð41Þ
where c1 is k* for N/2 < 3kp 6 3N/4. Since the most common aliasing occurrence will be that the sum of all
three wavenumbers will exceed jN/2j rather than the sum of any two, it is the c1 term that is most important
to control. The second aliasing regime is present when both quadratic and cubic terms alias, i.e. where
2kp > N/2 or 3kp > 3N/4 so that 2kp = N/2 + n and
ðkp þ kp þ kpÞ ¼
3

2

N
2
þ n

� �

ðkp þ kpÞ} ¼
�N

2
þ n

� �

ðkp þ kp þ kpÞ� ¼
�N

4
þ 3

2
n

� �
ð42Þ
in this case
k� ¼ a
�N

4
þ 3

2
n

� �
þ 3b

�N
2
þ n

� �
þ ð1� a� 2bÞ 3N

4
þ 3n

2

� �
¼ c2 ð43Þ
where c2 is k* for 3N/4 < 3kp 6 3N/2. From (41) and (43), the expressions for k* in the two aliasing regions are
c1 ¼
ð1� 2aÞN

2
þ n; c2 ¼

ð3� 4a� 12bÞN
4

þ 3

2
n ð44Þ
With this, the convective operators given in Table 2 may be constructed. Writing this as k* = k*(k),
k� ¼ k; 0 P k P
N
2

k� ¼ �N
2
þ ð1� 2aÞN

2
þ k;

N
2
< k P

3N
4

k� ¼ �9N
8
þ ð3� 4a� 12bÞN

4
þ 3k

2
;

3N
4
< k P

3N
2

ð45Þ
Optimizing (45) entails solving for a and b. The equation for k* with k in the range N/2 < k P 3N/4 is the same
as in the quadratic case, i.e. a = 1/2. For the region where 3N/4 < k P 3N/2, k is chosen to be the lowest pos-
sible wavenumber k = 3N/4. This is where the most energy is likely to reside. Then (3 � 4a � 12b)N/4 = 0 is
used to solve for b. The resulting operator is achieved by setting a = 1/2 and b = 1/12. Figs. 2–6 show k* ver-
sus k for various values of a and b. This heuristic aliasing analysis implies that, in order to reduce to a min-
imum unphysical energy transfer and growth at the high wavenumbers, convective formulations with a and b
set to values near a = 1/2 and b = 1/12 should be employed. The detailed form of the NSE implementation
used in this study is given in Appendix A.
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In Section 3 results from numerical experiments performed with a direct numerical simulation (DNS) code
are reported in an attempt to evaluate the performance, in practical test cases, of the different convective for-
mulations. A comparison of the preceding heuristic analysis with the numerical results is performed in order to
establish the optimal de-aliasing formulations that represents a compromise between computational cost and
de-aliasing behavior, giving acceptable k* levels over the whole range of aliased wavenumbers. Because the
preceding analysis is of a heuristic nature, a further digression into the Fourier analysis [10] of finite-difference
derivative operators [15] applied to quadratic and cubic terms is not considered.

Extending these ideas to quarticly or quinticly nonlinear operators by example of the cubically nonlinear
operator, (33), is rewritten as
Table
Coeffic

Case

3

3a

3b

3c

3d

3e

3f

3g

3h

3i

3j

3k

3l

3m

3n

3o

3p

3q

3r

3s

3t

3u

3v

3x

3y

3w
rðfghÞ ¼ arðfghÞ þ b½frðghÞ þ grðfhÞ þ hrðfgÞ� þ c½ghrf þ fhrg þ fgrh� ð46Þ

where
c ¼ 1�
n� 1

0

� �
a�

n� 1

1

� �
b

� �
ð47Þ� � � �
and n = 3 in the cubic case. The cubic, quadratic, and linear terms are each composed of
n
0

;
n
1

, and

n
2

� �
terms, respectively where

n
i

� �
represents a binomial coefficient. Each group of terms contains all

possible permutations of the elemental variables. This new operator gives rise to a modified wavenumber
2
ients of (33) where c = (1 � a � 2b) along with the particular values of k* for aliased wavenumber regions c1 and c2
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Fig. 2. Modified wavenumber k* versus k for a = 0 and different values of b in cubic skew-symmetric formulations.
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k� ¼
n

0

� �
aðn� 0Þk�p þ

n

1

� �
bðn� 1Þk}p þ

n

2

� �
cðn� 2Þkp ð48Þ
for n = 3. One solves for the ci, i = 1,2 associated with the n � 1 = 2 aliasing regimes whose boundaries are
defined by (1) nkp = N/2 + n and (2) (n � 1)kp = N/2 + n. Similarly, for quarticly nonlinear operators,
rðefghÞ ¼ arðefghÞ þ b½erðfghÞ þ frðeghÞ þ grðefhÞ þ hrðefgÞ� þ c½efrðghÞ þ ghrðef Þ
þ egrðfhÞ þ fhrðegÞ þ ehrðfgÞ þ fgrðehÞ� þ d½fghreþ eghrf þ efhrg þ efgrh� ð49Þ
where, with n = 4,
d ¼ 1�
n� 1

0

� �
a�

n� 1

1

� �
b�

n� 1

2

� �
c

� �
¼ 1� a� 3b� 3c ð50Þ
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Fig. 4. Modified wavenumber k* versus k for a = 1/2 and different values of b in cubic skew-symmetric formulations.
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and
k� ¼
n

0

� �
aðn� 0Þk�p þ

n

1

� �
bðn� 1Þk�p þ

n

2

� �
cðn� 2Þk}p þ

n

3

� �
dðn� 3Þkp ð51Þ
Therefore, one solves for the ci, i = 1,2,3 associated with the n � 1 = 3 aliasing regimes whose boundaries are
defined by (1) n kp = N/2 + n, (2) (n � 1)kp = N/2 + n, and (3) (n � 2) kp = N/2 + n. Just as with the cubic
operator, the first regime is the most crucial; n kp = N/2 + n. This procedure can be readily extended to quinti-
cly nonlinear terms and beyond.

2.3. Cost

While it is important to understand the degree to which any convective formulation results in aliased energy
growth at the high wavenumbers, it is also important to consider the cost one incurs when using the different
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formulations. In the previous sections, the presumed advantages of several alternative formulations of the con-
vective terms in the Navier–Stokes equations are briefly discussed. The main problem related to the use of
these formulations, especially in the context of computationally expensive high-order finite-differences opera-
tors, is the additional computations that they involve, mostly by increasing the number of costly spatial deriv-
atives that have to be evaluated at each time step. For chemically reacting mixtures described by a large
number of species Ng, an associated large number (Ng � 1) of independent species conservation equations
must be solved. Assuming three spatial dimensions, each one of these species conservation equations contains
three convective terms, the energy and mass conservation equations contain three convective terms each, and
so do each of the three momentum equations. The total number of high-order derivative operations (Nd)
involved in the computation of the convective terms of the NSE in their conservative form is therefore
Nd ¼ 3 � 3þ 3þ 3þ 3 � ðN g � 1Þ ¼ 15þ 3 � ðNg � 1Þ ð52Þ

where Ng is the total number of chemical species and the last term on the right-hand side of the above equation
represents the cost (expressed in terms of the number of derivative operations needed) associated with the spe-
cies transport equations. Likewise, the first term on the right-hand side represents the cost associated with the
momentum equations, the second with continuity, the third with energy. One correction to this analysis should
be made to account for how the convective operator choice is influenced by the computation of the diffusive
terms. Cubic formulations and QSSF require the mass fraction gradients whereas QSSB does not. Since these
terms are also required for the species diffusive flux, a fair comparison of the relative cost for these convective
operators should consider use of mass fraction gradients as free. This is the case for the cubic operators when
c 6¼ 0 and QSSF for the species continuity equations. With this in mind, the total cost of the quadratic and
cubic convective formulations in terms of derivative operators is listed in Table 3. It is readily seen from
((9) and (10)), ((11) and (12)) and, ((53) and (54)) below, that the cost differential between these operators
and a conservation/divergence approach lies principally with the species equations. The species equations gen-
erate a cost which is approximately a simple multiple of (Ng � 1). These conclusions are, to some degree, solu-
tion algorithm specific.

For the test simulations of the reactive cases reported in Section 3.2, the number of species is Ng = 9. The
cost in terms of derivative operations, Nd, almost doubles; going from Nd = 39 in the conservative formulation
to Nd = 78 in the quadratic skew-symmetric QSSB. While for the cubic skew-symmetric formulation with
b = 0 (only the linear and the purely cubic terms are retained), the cost is reduced to Nd = 54.

As an example of a reduced aliasing formulation, based on Table 2 and Fig. 4, we set f = q, g = ui or g = /,
and h = uj. Choosing a = 1/2 and b = 1/12 in (33), the new operators for the momentum and scalar equations are



Table 3
Approximate number of derivative operations needed at each grid point and time step for different convective formulations to solve the
RHS of (1)–(4) when q, Js, s, and _xs are provided

Convection operator Nd – # of derivatives

Conservation form – (5) and (6) 15 + 3 Æ (Ng � 1)
Quadratic skew-symm. F – (9), (10), and (13), a 6¼ 0 27 + 3 Æ (Ng � 1)
Quadratic skew-symm. B – (11)–(13), a 6¼ 0 30 + 6 Æ (Ng � 1)
Cubic skew-symm. – (33) a 6¼ 0, b = 0 30 + 3 Æ (Ng � 1)
Cubic skew-symm. – (33) a 6¼ 0, b 6¼ 0 51 + 9 Æ (Ng � 1)
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rj � ðquiujÞ ¼
1

2
rj � ðquiujÞ þ

1

12
½qrj � ðuiujÞ þ uirj � ðqujÞ þ uj � rjðquiÞ�

þ 1

3
½uiuj � rjqþ quj � rjui þ quirj � uj� ð53Þ

rj � ðq/ujÞ ¼
1

2
rj � ðq/ujÞ þ

1

12
½qrj � ð/ujÞ þ /rj � ðqujÞ þ uj � rjðq/Þ�

þ 1

3
½/uj � rjqþ quj � rj/þ q/rj � uj� ð54Þ
Again, the quadratic terms on the right-hand side of both above equations add a considerable computational
cost to simulations compared to the conservative formulations. A large fraction of this additional cost can be
eliminated, without large increases in error, by setting b = 0 and retaining only the linear and the purely cubic
terms. Hence, one has
rj � ðquiujÞ ¼
1

2
rj � ðquiujÞ þ

1

2
½uiuj � rjqþ quj � rjui þ quirj � uj� ð55Þ

rj � ðq/ujÞ ¼
1

2
rj � ðq/ujÞ þ

1

2
½/uj � rjqþ quj � rj/þ q/rj � uj� ð56Þ
2.4. DNS code

A parallel Navier–Stokes solver, S3D, developed at the Combustion Research Facility (Livermore, CA),
is used to perform the direct numerical simulations reported in this paper. The solution algorithm is imple-
mented in Fortran 90. S3D solves the NSE on a structured, Cartesian mesh in three spatial directions.
Chemical reactions coefficients are obtained from the CHEMKIN package [14]. Spatial derivatives are com-
puted with an eighth-order explicit finite-difference scheme. A fourth-order, six-stage explicit Runge–Kutta
scheme [16], is used for time integration paired with a proportional–integral–derivative (PID) error control-
ler [17] to optimally adjust the time-stepping. High-order explicit spatial filters [15,23] are available in S3D
from order 2 to order 20. In this paper, when filters are applied, they are order 10 filters and are only
applied to the integration vector immediately after the step is completed. Filters orders above 10 could also
be used effectively in the current context. Appendix A lists the implementation details of the cubic skew-
symmetric operator in S3D.

3. Results

The de-aliasing performance of several different convective-term formulations in the NSE for a compress-
ible fluid is tested by direct simulations of inert and reactive turbulent flows. The Mach number, M = juj/c,
represents the ratio of a characteristic convective velocity of the flow juj to the speed of sound c. A turbu-
lent Mach number, Mt = u 0/c, may also be defined when the characteristic convective velocity is replaced by
the rms velocity fluctuation u0 ¼<

ffiffiffiffiffiffiffiffiffiffiffi
u0 � u0
p

>. From Passot and Pouquet [25], for very low Mt, the density
fluctuations dq/q in the flow remain negligible, the energy spectrum of the density fluctuations is
flat, and the flow can be seen as essentially incompressible. As Mt increases (0.01 < Mt < 0.3), the density
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fluctuations dq/q increase too, the flow becomes quasi-incompressible, and the density acquires a meaning-
ful spectrum: the flow is in the ‘‘weak Mach-number regime’’. For Mt P 0.3 shocklets make their appear-
ances and the flow enters the ‘‘strong Mach-number regime’’ in which compressible effects become
important and cannot be considered any longer as perturbations of a vortical flow. To assess the relative
performance of the many convective formulations, numerical tests of isotropic turbulent flow in the ‘‘weak
Mach-number regime’’ are conducted by

	 varying the resolution through the chosen grid density and the integral length scale assigned to the initial
turbulent flow field,
	 changing the energetics of the density spectrum through the Mt assigned to the initial turbulent flow field

and the presence or lack of chemical reactions,
	 manipulating the convective formulation by changing the coefficients a and b.

The most obvious quality metric for a convective operator is that code does not crash. A summary of the
test cases run in the context of the present work using different combinations of a and b is shown in Fig. 7.
In this figure, it may be seen that a diagonal band of a � b pairs result in the DNS code not crashing. From
within this banded region, still better a � b pairs exist. Other metrics chosen to evaluate the quality of a
given convective formulation are the spectral behavior of relevant scalar and vector quantities like density
and velocity. Also, spatially averaged values of the vorticity vector magnitude, jxj ¼ jr � uj ¼ ðx � xÞ1=2

and the flexion vector magnitude,jvj ¼ jr � xj ¼ ðv � vÞ1=2 are examined. These two terms are directly
related to the more common enstrophy, 1

2
x � x, and palinstrophy, 1

2
v � v, terms. The flexion field [26], by vir-

tue of its doubly differentiated form, v ¼ r�r� u, has a wavenumber content that is far more skewed to
high wavenumbers than the velocity field. Hence, the flexion magnitude is an approximate indicator of the
high wavenumber content of the velocity field. It will be used to assess, in a relative sense, how much
unphysical energy has accumulated at high wavenumbers over the course of the DNS runs. Instantaneous
snapshots of density, temperature, and velocity fields are also used as auxiliary qualitative criteria but are
not included in this paper.
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Fig. 7. Chart of the test cases for different values of the a and b coefficients.
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3.1. 3-D compressible isotropic turbulence

Direct simulations of decaying isotropic compressible turbulence for an inert fluid are run at a turbulent
Mach number Mt 
 0.2 and at several grid resolutions. The turbulent velocity field is initialized using the Pas-
sot–Pouquet analytic expression [25]. This velocity field is computed and then mapped onto the particular
grid. Simulations are run for a relatively short time interval which is the same order of magnitude of a char-
acteristic eddy turnover time s = lt/u

0, where lt 
 10�4(m) is the integral length scale and u 0 
 70 (m/s) the rms
velocity fluctuation. In all non-reacting flow simulations the turbulent Reynolds number is Res = u 0 Æ qref Æ lt/
lref 
 447 where lref and qref are the reference viscosity and density. The Kolmogorov length scale is estimated
as gk 
 Re�3=4

s � lt and its value is close to 10�4(m) in the initial turbulent field. At the resolutions used in this
study, simulations for turbulent Mach numbers higher than 0.3 have been attempted without success because
the numerical solver is not able to properly handle shocklets that quickly form at Mt J 0.3. The pressure,
density, and temperature scalar fields are initialized at uniform values throughout the computational domain.
However, as soon as the computations are started, the fluctuating velocity field induces fluctuations in the den-
sity, temperature, and pressure fields through the coupling intrinsic to the NSE. The number of wavenumbers
available in the computational box is intentionally limited to values that do not allow a correct representation
of the smallest scales of the initially imposed turbulent field. In the following text, the different resolutions used
in the test cases are described using a resolution parameter, C ¼ g0

k=Dg, where g0
k is the Kolmogorov length

scale at time t = 0 and Dg is the grid length scale. Smaller values of C correspond to less resolved simulations.
The value of C is only used to describe the initial condition.

Several test runs at resolutions C = 0.2, 0.3, 0.9 are performed in order to investigate the response of the
unfiltered solution to different grid densities. The 3-D energy spectra of the velocity field obtained at different
resolutions is shown in Fig. 8. As expected, the higher the resolution, the lower the amount of energy that is
transferred to the high wavenumbers by the aliasing process. However, the previous analysis also shows that
the behavior of the different convective formulations is qualitatively similar at C = 0.2, 0.3, 0.9. Further, smal-
ler values of C are more computationally expedient in revealing the behavior of each convective operator.
Accordingly, the computational domain is defined by a 323 grid and only the results for C = 0.2 are discussed.
kn

E
 (

k
n
)

0.2 0.4 0.6 0.8 1

10–9

10–7

10–5

10–3

10–1

101

103

Grid Resolution = 0.9

Grid Resolution = 0.3

Grid Resolution = 0.2

Fig. 8. Comparison of the 3-D energy spectra of the velocity field for the quadratic skew-symmetric convective formulation QSSB at
different grid resolutions (C = 0.2,0.3,0.9). The mode number kn = k/kmax is normalized by the maximum number of modes supported by
each grid.
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At this relatively poor resolution, C = 0.2, a large amount of energy is initially transferred from the lower to
the higher wavenumbers. Numerical tests show that the rate of this energy transfer is strongly influenced by
which convective formulation is used. Typically, if the simulation survives a violent initial transient lasting for
a time period of about one eddy turnover s, a slow decay of the entire energy spectrum follows. This is the case
for many of the skew-symmetric convective formulations (see Fig. 7 for an overview). In all figures below, the
time is given in units of the characteristic eddy turnover time, s.

As an example of the spectral behavior described above, the time evolution of the energy spectrum for the
three-dimensional velocity field over a time period Dt = 4s is shown in Fig. 9 (thick lines and circles). The time
evolution of the energy spectrum for the three-dimensional scalar density field over the same time period is
also shown (thin lines and diamonds). A maximum time length of Dt = 4s is chosen for the simulations
because such time interval is long enough for aliasing to be significant but short enough for the solution to
preserve some degree of correlation with the initial turbulence field. The spectra shown in Fig. 9 results from
a simulation performed using the quadratic skew-symmetric convective formulation QSSB, (11) and (12), and
with no explicit filtering of the solution. The time evolution of the energy spectra for all other convective for-
mulations shows the same qualitative behavior observed in Fig. 9; an initial large transfer of energy from the
low to the high wavenumbers takes place between t 
 0 and t 
 s. This initial transient is then followed by a
decay over the whole range of wavenumbers between t 
 s and t 
 4s. However, some relevant quantitative

differences emerge in the rate of energy transfer from the low to the high wavenumbers for the different con-
vective formulations.

In order to formulate a more quantitative assessment about the aliasing behavior of the different convective
formulations, it is convenient to compare the three-dimensional energy spectra of the velocity fields. This is
done in Fig. 10 for t 
 (1/2)s and in Fig. 11 for t 
 4s. The combinations of a and b corresponding to the
dashed circles in Fig. 7 (note that these include the conservation form of the convective terms for a = 1
and b = 0) produced a code crash at t 
 (1/3)s and are not included in the spectral analysis because of their
poor performance. Not unexpectedly, the filtered solution (labeled Conservation – filtered) in Fig. 10 shows
the lowest energy aliasing at the high wavenumbers but also a considerable energy removal from the mid-
range wavenumbers (3 < k < 7). It should be remembered that the filter shape was chosen so as to remove only
wavenumbers unresolvable by the numerical method. Given the intentional overloading of the grid, in terms
of high wavenumber energy content, the amount of energy removed by the filter might appear alarming yet the
removed energy was not resolvable by the numerical method. While all unfiltered solutions from the quadratic
k
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Fig. 9. Time evolution of the three-dimensional energy spectrum of the vector velocity field (thick lines and circles) and scalar density field
(thin lines and diamonds) in decaying compressible isotropic turbulence. The skew-symmetric form QSSB is used for the convective terms
and no explicit filtering is applied to the solution.
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and cubic convective formulations have similar spectra, the cubic formulations having the coefficients a = 1/2,
b = 1/12 and a = 1/2, b = 1/6 in (Section 2.2.2) are clearly characterized by the worst aliasing at t 
 (1/2)s. A
detail of the top figure is shown in the bottom figure, focusing only on the range 6 < k < 16. Note that the
quadratic formulation QSSB is characterized by a spectrum virtually indistinguishable to that of the cubic for-
mulation obtained by setting a = 1/2 and b = 0 in (33).

Fig. 11 shows the three-dimensional energy spectra of the velocity fields at t 
 4s. The quadratic formula-
tions, QSSB and QSSF, and the cubic formulation obtained by setting a = 1/2 and b = 0 in (33) still show the
best performance with respect to aliasing over the whole high wavenumber range 6 < k < 16. As for the other
cubic formulations, two perform relatively worse in the 6 < k < 10 range (a = 1/4, b = 0 and a = 0, b = 1/4)
while the other two are worse in the 10 < k < 16 range (a = 1/2,b = 1/12 and a = 1/2,b = 1/6).

According to Table 2, Fig. 4, and the discussion presented in Section 2.2.2, the best de-aliasing performance
of the generalized cubic convective formulation, (33), should be achieved approximately for a = 1/2 and b = 1/
12. The numerical tests confirm that a = 1/2 is a good choice for the c1-range but they suggest b = 0 as a better
alternative for the c2-range. This fact is somewhat surprising but nevertheless very positive, being that the
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computational cost of the numerical simulation drastically increased when b 6¼ 0. Hence, setting b = 0 makes
the associated cubic skew-symmetric formulation of the convective terms not only preferable for minimizing
unwanted energy aliasing but also for reducing operation count and computational cost.

After observing the different rates at which aliased energy builds up in the high wavenumber range for dif-
ferent convective formulations, it is important to then observe the time evolution of the energy contained at
low wavenumbers. These are a major source from which physical energy is taken during the initial transient
and transferred to the high wavenumbers by the aliasing process. The rate at which the energy decay takes
place at the first wavenumber of the energy spectrum E(k) for k = 1 is expected to be consistent with the results
of Figs. 10 and 11. Examination of Fig. 12 reveals that some differences exist between the convective formu-
lations in the time evolution of the energy content of the first wavenumber E(1). Moreover, these differences
are seen to increase with time.
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Fig. 12. Time evolution of the energy content at the first mode of the 3-D energy spectra of the velocity field for a quadratic, QSSB, and a
cubic (a = 1/2 and b = 0) skew-symmetric convective formulation.
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In comparing simulations of two convective formulations, a relatively faster decay of E(1) over 0 < t < s
implies a relatively faster unphysical energy transfer to higher wavenumbers through the aliasing mechanism.
This may be inferred because the only difference between the two simulations is the convective formulation
itself. Hence, relatively faster energy loss from low wavenumbers is indicative of poor de-aliasing behavior.
Accordingly, the cubic formulation, obtained by setting a = 1/2 and b = 0 in (33), exhibits the least aliasing
in these tests.

Visual observation of the instantaneous flexion fields (not shown here) indicates that the amount of flexion
in the initial turbulent field is relatively modest. However, as similar simulations proceed, the amount of flex-
ion increases with time at a rate that depends on the particular convective formulation used. The spatially
averaged values of the instantaneous vorticity magnitude, jxj, and flexion magnitude, jvj, at t 
 4s are plotted
against each other in Fig. 13 for a number of different convective formulations. Lower average values of both
vorticity and flexion, at t 
 4s, are assumed to indicate lower levels of energy at the high wavenumbers of the
velocity field, thus less aliasing. Accordingly, the convective formulations are assumed to perform better when
closest to the bottom left of the graph. Among the inert cases (top left of Fig. 13), nearly all cubic skew-sym-
metric formulations show lower jxj and jvj than the quadratic one, QSSB, (exceptions are the combinations
a = 0, b = 1/4 and a = 1/4, b = 0). The spectra in Fig. 11 indicate that the aliasing performance of the cubic
skew-symmetric formulations corresponding to a = 0, b = 1/4 and a = 1/4, b = 0 are poorest in the range
6 < k < 10 at t 
 4s. Fig. 11 also suggests that, in a net sense, the formulations corresponding to a = 1/2,
b = 1/6 and a = 1/2, b = 1/12, showing the lowest jxj and jvj in Fig. 13, have aliased large quantities of energy
in the range 3 < k < 6 to the highest wavenumbers range 10 < k < 16. Therefore, one can conclude that the
spatially averaged values of the vorticity and flexion magnitude, jxj and jvj, are useful indicators of the level
of velocity fluctuations present in the range 3 < k < 10.

From the discussion above, the quadratic skew-symmetric convective forms, QSSB and QSSF, and the new
cubic skew-symmetric formulation obtained by setting a = 1/2 and b = 0 in (33) result in nearly identical ali-
asing behavior in the case of inert decaying compressible turbulence. Interestingly, the present numerical sim-
ulations show no meaningful differences between the aliasing behavior of the quadratic skew-symmetric
convective formulation of Feiereisen et al. [9], ((9) and (10)), and the alternative one proposed by Blaisdell
et al. [1], corresponding to ((11) and (12)). It should be noted that this is in contrast to the conclusions reached
by Erlebacher and Hussaini [7] which report a stable solution when using ((9) and (10)) and an unstable solu-
tion when ((11) and (12)) are used (both formulations use a = 1/2).
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3.2. 3-D premixed flame propagation in compressible decaying isotropic turbulence

The results discussed in Section 3.1 indicate that the quadratic skew-symmetric forms, QSSB and QSSF, and
the cubic skew-symmetric form obtained by setting a = 1/2 and b = 0 in (33) minimize aliasing error under the
conditions of the tests. These three formulations result in almost identical spectral behavior, with the cubic
formulation exhibiting marginally better behavior than the other two in respect to energy loss from the first
wavenumber.
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In the present section, these three convective formulations are tested in the case of turbulent reactive flows
in order to extend the conclusions reached in the previous section to the case when larger density fluctuations
are present. Given the fact that the two alternative quadratic formulations result in nearly identical aliasing
behavior in the reactive case also, only the QSSB formulation, (11) and (12), is included in the following
discussion.

Reactive flows are characterized by considerably stronger density variations than those observed for
Mt < 0.3 in inert flows. One of the main ideas behind the present investigation is the hypothesis that the strong
density variations found in reactive flows would enhance the cubic nature of the convective terms in the NSE,
thereby making cubic skew-symmetric formulations perform relatively better with respect to aliasing.

Two parallel flat flame sheets are initially placed in the middle of the computational domain that is defined by
a 483 grid. The flame propagates in a H2-air mixture both in the negative and positive x-direction and creates
strong temperature and density fluctuations and steep spatial gradients at the flame front. The chemical kinetics
of the reacting mixture at an equivalence ratio of 1 is described by nine species and 19 reactions [20]. The ratio of
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the Kolmogorov length scale to the grid length scale is set to C = 0.2 as in the inert cases. However, in the reac-
tive case Res 
 700 for the ‘‘cold’’ H2–air mixture. Unlike the inert flow cases, the reactive flow field is aperiodic
in the x-direction. This makes discrete Fourier transforms somewhat inappropriate. However, the aperiodicity
was not discernable from 1-D spectra taken in the flame-normal direction (not shown here). Further details of
the numerical experiment are not immediately relevant to the present discussion and are omitted.

In order to highlight the fundamental differences between the spectral behavior of the inert and reactive
cases, the time evolution of the velocity spectrum, in the reactive case, over Dt = 4s, is shown in Fig. 14.
The time evolution of the energy spectrum of the density field, over the same time period, is also shown (thin
lines and diamonds). As in the inert case, a maximum time length of Dt = 4s is chosen for the simulations
because such time interval is long enough for aliasing to be significant but short enough for the spectra to
remain reasonable and simultaneously avoiding complete combustion throughout the computational domain.
Compared to the inert case, seen in Fig. 9, the density power spectrum associated to the reactive case shows a
two orders of magnitude increase and no sign of decay of its energy level for wavenumbers k > 4 (within the
simulated time interval Dt 
 4s). This fact is a direct consequence of the chemical reactions that take place in
the computational domain and of the associated increase in amplitude of the temperature and density
fluctuations.

Visual inspection of the instantaneous velocity, vorticity, and flexion fields (not shown here) suggests that
the quadratic form produces a solution characterized by smaller structures and, therefore, stronger high wave-
number fluctuations than that of the cubic form. This impression is confirmed quantitatively by the fact that,
at time t 
 4s, the mean values of vorticity and flexion averaged over the entire computational domain are
larger for the quadratic case (jxj = 2.229 · 106 s�1 and jvj = 1.236 · 109 cm�1 s�1) than for the cubic one
(jxj = 2.166 · 106 s�1 and jvj = 1.201 · 109 cm�1 s�1). This is shown at the bottom right of the graph in
Fig. 13 for comparison.

For the same two convective formulations, Fig. 15 shows the time evolution of the spatially averaged value
of flexion between t 
 0 and t 
 4s. After t 
 s, a lower value of jvj is obtained when the cubic skew-symmetric
convective formulation is used. This suggests that this convective form performs better than the QSSB qua-
dratic formulation with respect to aliasing.

Fig. 16 (top) shows the time evolution of the entire energy spectrum for the three-dimensional velocity field
between t = 0 and t = 4s using two different convection formulations. Different amounts of aliasing to the high
wavenumbers may be seen in the bottom figure which highlights the high wavenumber range from 9 < k < 23.
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Even if the differences in the energy levels are relatively small, it is significant that they emerge in a very short
time interval and generally increase as time is advanced. Again, the cubic formulation performs best.

Also in the reactive case, the rate at which the energy decay takes place at the first wavenumber of the
energy spectrum, E(1), is expected to be consistent with the results shown in Fig. 16 and with the discussion
above. Fig. 17 reveals that the two alternative convective formulations result in significant differences in the
time evolution of the energy content of E(1). These differences are considerably larger than those observed
in the inert cases where the density spectrum is less energetic than in the reactive case. These results suggest
that while the cubic formulation with a = 1/2 and b = 0 exhibits marginally better aliasing behavior than exist-
ing quadratic skew-symmetric formulations in flows with weak density spectra, its performance becomes
appreciably better when the density spectrum broadens. Given the earlier analysis of each formulation in Sec-
tion 2, this result is unsurprising.

4. Conclusions

A new family of convective operators is developed for use in the discretized form of the NSE for a com-
pressible fluid. The essential distinction of these new convective operators, called cubic skew-symmetric con-
vective operators, over existing approaches is that they are designed with the expectation that all three
variables within the cubically nonlinear convective operator have non-trivial spectra. To investigate the effi-
cacy of the new convective operators, the aliasing performance of several new as well as existing convective
formulations is studied and compared both analytically and through numerical experiments. Analytical stud-
ies focus on the behavior of wavenumber sums with respect to what is resolvable by the grid. Unlike formu-
lations designed with quadratic nonlinearities in mind, the aliasing performance of the new cubic operators
must be analyzed in two regimes. The first, and most likely, is when the sum of the three wavenumbers aliases.
Less likely, a second regime considers when the sum of two wavenumbers is sufficient to cause aliasing. From
this, convective operators in (33) with values in the neighborhood of a = 1/2 and b = 1/12 are deemed prom-
ising from a performance vantage point but the method using a = 1/2 and b = 0 is the least computationally
expensive. Numerical experiments of the new formulations investigated numerical stability, low wavenumber
energy loss, and high wavenumber energy gain. As a minimal requirement of any convective operator, com-
putational stability during the numerical experiments appeared to occur for 0.25 [ (a + b) [ 0.75. To assess
the rate at which energy is aliased, the evolution of both the low and high wavenumber regimes is studied.
Since much of the aliased energy is extracted from the lowest and most energetic wavenumbers, differential
rates of energy loss from low wavenumbers is a useful way to compare method performance. In flows with
mild density variation, the new cubic formulation with a = 1/2 and b = 0 performed slightly better than exist-
ing quadratic skew-symmetric formulations. In reacting flows where the density spectrum is more energetic,
this same cubic formulation exhibited less energy loss from low wavenumbers. Similarly, the high wavenumber
energy gains were less for the new cubic formulation than existing quadratic skew-symmetric approaches. This
could be seen from both velocity spectra and certain hydrodynamic variables whose values are strongly influ-
enced by the high wavenumber energy content of the velocity field.

Better aliasing properties of the convective operator reduce the energy loss from low wavenumbers for
which there is no obvious and simple remedy. Further, they reduce the accumulation of aliased energy at high
wavenumbers which is generally unresolvable by the numerical method. While high-order filtering of the inte-
gration variables removes this unresolved energy content, it is preferable to mitigate the sources of aliased
energy rather than to simply remove it. Also, precise filtering may be unavailable to many users. Use of
the new cubic convective operator with a = 1/2 and b = 0 results in better aliasing behavior than existing qua-
dratic approaches, reduces the need for filtering, and does so at a lower computational cost.
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Appendix A. Implementation

The Navier–Stokes equations for a compressible fluid are generally derived in differential form in what
is called the conservation or divergence form given in (1)–(4). From these, one may rewrite various qua-
dratic and cubically nonlinear terms using the quadratic and cubic skew-symmetric approaches, (20) and
(33). Note that the continuity equation and the pressure–velocity term in the energy equation represent
quadratic nonlinearities and are thus recast, unambiguously, using a quadratic skew-symmetric approach.
Hence, the form of the full de-aliasing approach outlined in this paper, and as implemented in S3D, is
given by
oðquiÞ
ot
¼ �rj � ðaquiuj þ pdij � sjiÞ � b qrj � ðuiujÞ þ uirj � ðqujÞ þ uj � rjðquiÞ

� 	

� c uiuj � rjqþ quj � rjui þ quih
� 	

þ q
XNg

s¼1

Y sfsi ðA:1Þ

oq
ot
¼ �rj � ðaqqujÞ � bq qhþ uj � rjq

� 	
ðA:2Þ

oðqe0Þ
ot

¼ �rj � ðaqe0uj þ aqpuj � sji � ui þ qjÞ � b qrj � ðe0ujÞ þ e0rj � ðqujÞ þ uj � rjðqe0Þ
� 	

� c e0uj � rjqþ quj � rje0 þ qe0h
� 	

� bq phþ uj � rjp
� 	

þ quj �
XNg

s¼1

Y sfsj þ
XNg

s¼1

fsj � Jsj ðA:3Þ

oðqY sÞ
ot

¼ �rj � ðaqY suj þ JsjÞ þ W s _xs � b qrj � ðY sujÞ þ Y srj � ðqujÞ þ uj � rjðqY sÞ
� 	

� c Y suj � rjqþ quj � rjY s þ qY sh
� 	

; s ¼ 1; 2; . . . ;N g ðA:4Þ
where i, j = 1,2,3, h ¼ rj � uj, c = (1 � a � 2b), and bq = (1 � aq). To distinguish coefficients of the cubic and
quadratic skew-symmetric forms, the coefficients a, b, and c are those of the cubic method and aq and bq rep-
resent those of the quadratic method. Notice that terms uj � rjq and rj � ðqujÞ show up several equations.
Again, no attempt is made to reformulate rj � sji, rj � qj, rj � Jsj, and rj � ðsji � uiÞ for the purposes of en-
hanced aliasing performance. In S3D, while running the cubic skew-symmetric formulations, aq = bq = 1/2
has been chosen.
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